Vital signs over radio

  1. X. Hui and E. C. Kan, “Vital signs over multiplexed radio by near-field coherent sensing”, Nature Electronics, vol. 1, doi: 10.1038/S41928-017, Jan. 2018. (Featured in Nature Research News).
  2. X. Hui and E. C. Kan, “Mitigation of body movement interference in near-field coherent sensing for heartrate monitoring”, IEEE Intl. Conf. Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, Mar. 4 – 7, 2018.
  3. X. Hui and E. C. Kan, “Accurate extraction of heartbeat intervals with near-field coherent sensing”, submitted to IEEE Intl. Conf. Communications (ICC), Kansas City, MO, May 20 -24, 2018.
  4. P. Sharma and E. C. Kan, “Sleep scoring with a UHF RFID tag by near-field coherent sensing”, submitted to IEEE MTT 2018 International Microwave Symp. (IMS), Philedelphia, Pennsylvania, June 10 – 15, 2018.
  5. P. Sharma, X. Hui and E. C. Kan, “An on-chest RFID tag for sleep monitoring by near-field coherent sensing,” IEEE Transactions on Biomedical Circuits and Systems, under review, 2018.
  6. X. Hui and E. C. Kan, “No-touch measurements of vital signs in small conscious animals”, Science Advances, under review, 2018.

Passive RFID tags for locating and sensing

  1. P. Wang, G. Pei and E. C. Kan, “Pulsed wave interconnect”, IEEE Trans. VLSI Systems, vol. 12, no. 5, pp. 453-463, May 2004.
  2. J. Kim, W. Ni, C. Lee and E. C. Kan, “A novel global interconnect method using nonlinear transmission lines”, IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, September 18 – 21, 2005.
  3. J. Kim, W. Ni and E. C. Kan, “Crosstalk reduction with nonlinear transmission lines for high-speed VLSI system”, IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, September 11-13, 2006, Paper No. 29.6.
  4. K. G. Lyon, F. Yu and E. C. Kan, “A UWB-IR transmitter using frequency conversion in nonlinear transmission lines with 16pJ/pulse energy consumption”, IEEE Trans. Microwave Theory and Techniques (MTT), vol. 58, no. 12, pp. 3617 – 3625, Dec. 2010.
  5. F. Yu, K. G. Lyon and E. C. Kan, “A novel passive RFID transponder using harmonic generation of nonlinear transmission lines”, IEEE Trans. Microwave Theory and Techniques (MTT), vol. 58, no. 12, pp. 4121 – 4127, Dec. 2010.
  6. F. Yu, K G. Lyon and E. C. Kan, “Harmonic generation from integrated nonlinear transmission lines for RFID applications”, IEEE MTT 2010 International Microwave Symp. (IMS), Anaheim, CA, May 23-28, 2010, pp. 844 – 847.
  7. F. Yu, Y. Ma, K. G. Lyon and E. C. Kan, “Reflective nonlinear transmission lines for single-antenna non-self-jamming RFID”, IEEE MTT 2011 International Microwave Symp. (IMS), Baltimore, MD, June 5 – 10, 2011.
  8. F. Yu, Y. Ma and E. C. Kan, “A passive wireless sensor with reflective nonlinear transmission lines with capacitive signal transduction”, Radio and Wireless Symp. (RWS), Santa Clara, CA, Jan. 15 – 18, 2012.
  9. F. Yu, K. G. Lyon and E. C. Kan, “A low-power UWB-IR transmitter by tapered nonlinear transmission lines”, IEEE Microwave and Wireless Components Letters, vol. 22, no. 12, pp. 618 – 620, Dec. 2012.
  10. Y. Ma and E. C. Kan, “Accurate indoor ranging by broadband passive NLTL tags”, IEEE MTT 2013 International Microwave Symp. (IMS), Seattle, WA, June 2 – 7, 2013.
  11. Y. Ma and E. C. Kan, “Accurate indoor ranging by broadband harmonic generation in passive NLTL backscatter tags”, IEEE Trans. Microwave Theory and Techniques (MTT), vol. 62, no. 5, pp. 1249 – 1261, May 2014.
  12. Y. Ma, H. Rong and E. C. Kan, “Millimeter accuracy passive tag ranging via second harmonics RF backscattering against body movement interference”, IEEE GlobalCom, Austin, TX, Dec. 8 – 12, 2014.
  13. Y. Ma and E. C. Kan, “Passive ranging by low-directivity antennas with quality estimate”, IEEE MTT 2015 International Microwave Symp. (IMS), Pheonix, AZ, May 18 – 22, 2015. (Third place in Best Student Paper competition out of 150 accepted student papers)
  14. Y. Ma and E. C. Kan, “Ubiquitous tagless object locating with ambient harmonic tags”, IEEE Intl. Conf. Computer Communications (Infocom), San Francisco, CA, Apr. 10 – 15, 2016.
  15. Y. Ma, X. Hui and E. C. Kan, “Harmonic-WISP: A passive broadband RFID platform”, IEEE MTT 2016 International Microwave Symp. (IMS), San Francisco, CA, May 22 – 27, 2016.
  16. Y. Ma, X. Hui and E. C. Kan, “3D locating via broadband nonlinear backscatter in passive devices with centimeter precision”, 22nd Intl. Conf. Mobile Computing and Networking (ACM Mobicom), New York, NY, Oct. 3 – 7, 2016.
  17. X. Hui, Y. Ma and E. C. Kan. “Real-time 3D robotic arm tracking in indoor environment by RF nonlinear backscattering”, 2016 ACM S3, New York City, 2016.
  18. X. Hui, Y. Ma and E. C. Kan, “Code division multiple access in centimeter accuracy harmonic RFID locating system”, IEEE J. Radio Frequency Identification (RFID), vol. 1, no. 1, pp. 51 – 58, March 2017.
  19. X. Hui, Y. Ma, and E. C. Kan, “Real-time code-division multi-tag localization with centimeter accuracy”, 11th Intl. RFID Conf., Phoenix, AZ, May 9 – 11, 2017.
  20. X. Hui and E. C. Kan, “Collaborative reader code division multiple access in the harmonic RFID system”, IEEE J. Radio Frequency Identification (RFID), Art. 2469-7281, July 2018.
  21. Y. Cao, X. Hui and E. C. Kan, “An RF-to-DC rectifier based on tunable threshold diodes”, IEEE J. Radio Frequency Identification (RFID), under review, 2018.
  22. X. Hui and E. C. Kan, “Ultra-high-resolution radio ranging with the harmonic RFID system”, Nature Electronics, under review, 2018.

CMOS molecular interface biosensors

  1. N. Rakhilin, B. Barth, J. Choi, N. L. Munoz, S. Kulkarni, J. Jones, D. Small, Y.-T. Cheng, Y. Cao, C. LaVinka, E. C. Kan, X. Dong, M. Spencer, P. Pasricha, N. Nishimura and X. Shen, “Simultaneous optical/electrical in vivo analysis of the enteric nervous system”, Nature Communication, , 2016.
  2. Y. Cao, N. Rakhilin, P. H. Gordon, X. Shen and E. C. Kan, “A real-time neural spike sorting method based on dynamic time warping for enteric neural recording with large waveform variability”, J. Neuron Methods, doi: 10.1016, pp. 97 – 109, Dec. 2015.
  3. K. Jayant, A. Singhai, Y. Cao, J. B. Phelps, M. Lindau, D. Holowka, B. A. Baird and E. C. Kan, “Non-Faradaic electrochemical detection of exocytosis from mast and chromaffin cells using floating-gate MOS transistors”, Nature Scientific Reports, vol. 5, art. 18477, Dec. 2015.
  4. P. H. Gordon, K. Jayant, Y. Cao, K. Auluck, J. B. Phelps and E. C. Kan, “Critical assessment on modeling and design of non-Faradic CMOS electrochemical sensing”, IEEE Sensor Journal, art. 2445292, June 2015.
  5. K. Jayant, K. Auluck, S. Rodriguez, Y. Cao and E. C. Kan, “Programmable ion-sensitive transistor interfaces III. Design considerations, signal generation and sensitivity enhancement”, Phys. Rev. E., vol. 89, no. 5, art. 052817, 2014.
  6. K. Jayant, K. Auluck, M. Funke, S. Anwar, J. B. Phelps, P. H. Gordon, S. R. Rajwade and E. C. Kan, “Programmable ion sensitive transistor interfaces I: Electrochemical gating”, Phys. Rev. E., vol. 88, no. 1, Art. 012801, July, 2013.
  7. X. Li and E. C. Kan, “A wireless low-range pressure sensor based on P(VDF-TrFE) piezoelectric resonance”, Sensors and Actuators A: Physical, vol. 163, no. 2, pp. 457 – 463, Oct. 2010.
  8. B. C. Jacquot, N. L. Muñoz, D. W. Branch and E. C. Kan, “Non-faradic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors”, Biosensors and Bioelectronics, vol. 23, no. 10, April, 2008.
  9. B. C. Jacquot, C. Lee, Y. N. Shen and E. C. Kan, “Time-resolved ion and molecule transport sensing with microfluidic integration”, IEEE Sensors Journal, vol. 7, no. 10, pp. 1429-1434, Oct. 2007.
  10. Z. Liu, M. Kim, Y. N. Shen and E. C. Kan, “Actuation by electrostatic repulsion by nonvolatile charge injection”, Sensors and Actuators A, Physical, vol. 119, no.1, pp. 236-244, 2005.
  11. Y. N. Shen, Z. Liu, B. C. Jacquot, B. A. Minch, and E. C. Kan, “Integration of chemical sensing and electrowetting actuation on chemoreceptive neuron MOS transistors (CνMOS)”, Sensors and Actuators B., vol. 102, no. 1, pp. 35-43, Sept. 2004.
  12. Y. N. Shen, Z. Liu, C. Lee, B. A. Minch and E. C. Kan, “Charge-based chemical sensors: a neuromorphic approach by the chemoreceptive neuron MOS transistors (CνMOS)”, IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2171-2178, Oct. 2003.

 

Nanoscale CMOS systems

  1. L.-T. Tung, M. V. Mateus and E. C. Kan, “Tri-gate graphene nanoribbon transistors with transverse-field bandgap modulation”, IEEE Trans. Elec. Dev., vol. 61, no. 9, pp. 3329 – 3334, Sept. 2014.
  2. S. R. Rajwade, K. Auluck and E. C. Kan, “Dynamic Modeling of Dual–Speed Ferroelectric and Charge Hybrid Memory”, IEEE Trans. Elec. Dev., vol. 60, no. 10, pp. 3378 – 3384, Oct. 2013.
  3. J. T. Shaw, H.-W. Tseng, S. Rajwade, L.-T. Tung, R. A. Buhrman and E. C. Kan, “Interface and oxide quality of CoFeB/MgO/Si tunnel junction”, J. Appl. Phys., vol. 111, no. 9, art. 093908, 2012.
  4. J. T. Shaw, Q. S. Xu, S. Rajwade, T.-H. Hou and E. C. Kan, “Redox molecules for resonant tunneling barrier in nonvolatile memory”, IEEE Trans. Elec. Dev., vol. 59, no. 4, pp. 1189 – 1198, Apr. 2012.
  5. S. R. Rajwade, K. Auluck, J. B. Phelps, K. G. Lyon, J. T. Shaw and E. C. Kan, “A ferroelectric and charge hybrid nonvolatile memory – Part I: device concept and modeling”, IEEE Trans. Elec. Dev., vol. 59, no. 2, pp. 441 – 449, Feb. 2012.
  6. J. T. Shaw, Y.-W. Zhong, K. J. Hughes, T.-H. Hou, H. Raza, S. Rajwade, J. Bellfy, J. R. Engstrom, H. D. Abruna and E. C. Kan, “Integration of self-assembled redox molecules in flash memories”, IEEE Trans. Elec. Dev., vol. 58, pp. 826 – 834, Mar. 2011.
  7. T.-H. Hou, H. Raza, K. Afshari, D. J. Ruebusch and E. C. Kan, “Nonvolatile memory with molecule-engineered tunneling barriers”, Appl. Phys. Lett., vol. 92, 153109, April 2008.
  8. T.-H. Hou, U. Ganguly, and E. C. Kan, “Programmable molecular orbital states of C60 from integrated circuits”, Appl. Phys. Lett., vol. 89, article 253113, Dec. 2006.
  9. T.-H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “Design optimization of metal nanocrystal memory – Part I: nanocrystal array engineering”, IEEE Trans. Elec. Dev., vol. 53, no. 12, pp. 3095-3102, Dec. 2006.
  10. C. Lee, T.-H. Hou and E. C. Kan, “Nonvolatile memory with a metal nanocrystal/nitride heterogeneous floating gate”, IEEE Trans. Elec. Dev., vol. 52, no. 12, pp. 2697-2702, Dec. 2005.
  11. C. Lee, U. Ganguly, V. Narayanan, T.-H. Hou, J. Kim and E. C. Kan, “Asymmetric electric field enhancement in nanocrystal memories”, IEEE Elec. Dev. Lett., vol. 26, no. 12, pp. 879-881, Dec. 2005.
  12. U. Ganguly, E. C. Kan and Y. Zhang, “Carbon nanotube based non-volatile memory with charge storage in metal nanocrystals”, Appl. Phys. Lett., vol. 87, p. 043108, 2005.
  13. C. Lee, J. A. Meteer, V. Narayanan and E. C. Kan, “Process characterization of metal nanocrystal self assembly on ultra-thin oxide for nonvolatile memory applications”, J. Semiconductor Materials, vol. 34, no. 1, pp. 1-11, Jan. 2005.
  14. G. Pei and E. C. Kan, “Independently driven DG MOSFET for mixed-signal circuits, part I: quasistatic and non-quasistatic channel coupling”, IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2086 – 2093, Dec. 2004.
  15. P. Wang and E. C. Kan, “High-speed interconnects with underlayer orthogonal metal grids”, IEEE Trans. Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, vol. 27, no. 3, pp. 497-507, Aug. 2004.
  16. P. Wang, G. Pei and E. C. Kan, “Pulsed wave interconnect”, IEEE Trans. VLSI Systems, vol. 12, no. 5, pp. 453-463, May 2004.
  17. P. Wang, N. Tien and E. C. Kan, “Permalloy loaded transmission line for high-speed interconnects”, IEEE Trans. Electron Devices, vol. 51, no. 1, pp. 74-82, Jan. 2004.
  18. Z. Liu, C. Lee, V. Narayanan, G. Pei and E. C. Kan, “A novel quad source/drain metal nanocrystal memory device for multi-bit-per-cell storage”, IEEE Electron Device Letters, vol. 24, no. 5, pp. 345-347, May 2003.
  19. 1. Z. Liu, C. Lee, V. Narayanan, G. Pei and E. C. Kan, “Metal nanocrystal memories, Part I: device design and fabrication”, IEEE Trans. Electron Devices, vol. 49, no. 9, pp.1606-1613, Sept. 2002.

 

Hardware Security Functions

  1. E. C. Kan, “Hardware-oriented security: Single particle effects from flash memory for random numbers, unclonable ID, steganography and authentication”, CMOS Emerging Technology Research Conference, Vancouver, Canada, May 22 – 24, 2015.
  2. S. Q. Xu, W.-K. Yu, G. E. Suh and E. C. Kan, “Understanding sources of variations in Flash memory for physical unclonable functions”, International Memory Workshop, Taipei, Taiwan, May 17 – 19, 2014.
  3. Y. Wang, W.-K. Yu, G. E. Suh and E. C. Kan, “Hiding information in Flash memory”, IEEE Symp. Security and Privacy, San Francisco, CA, May 19 – 22, 2013.
  4. Y. Wang, S. Shuo, W.-K. Yu, G. E. Suh and E. C. Kan, “Flash memory for ubiquitous hardware security functions: True random number generation and device fingerprints”, IEEE Symp. Security and Privacy, San Francisco, May 20 – 23, 2012.
  5. 1. P. Prabhu, A. Akel, L. Grupp, W.-K. Yu, G. E. Suh, E. C. Kan and S. Swanson, “Extracting device fingerprints from flash memory exploiting physical variations”, 4th Intl. Conf. Trust and Trustworthy Computing (TRUST), Pittsburgh, PA, June 22 – 24, 2011.

 

Technology CAD

  1. K. Auluck and E. C. Kan, “Circuit models for ferroelectrics – Part I: Physics of polarization switching”, IEEE Trans. Elec. Dev., vol. 63, no. 2, pp. 631 – 636, Feb. 2016.
  2. H. Raza and E. C. Kan, “Strain and field modulation in bilayer graphene band structure”, J. Phys: Condensed Matter, vol. 21, art. 102202, 2009.
  3. J. T. Shaw, T.-H. Hou, H. Raza and E. C. Kan, “Statistical metrology of metal nanocrystal memories with 3D finite-element analysis”, IEEE Trans. Elec. Dev., vol. 56, no. 8, pp. 1729 – 1735, Aug. 2009.
  4. H. Raza, T. Raza and E. C. Kan, “Electrical transport in a two dimensional electron and hole gas on a Si(001)-(2×1) surface”, Phys. Rev. B, vol. 78, Art. 193401, 2008.
  5. H. Raza and E. C. Kan, “Armchair graphene nanoribbons: Electronic structure and electric field modulation”, Phys. Rev. B, vol. 77, no. 24, Art. 245434, June 2008, Condense Matter arXiv: 0803.1233.
  6. U. Ganguly, V. Narayanan, C. Lee, T. Hou and E. C. Kan, “3D analytical modeling of nanocrystal memory electrostatics”, J. Appl. Phys., vol. 99, no. 11, Art. 114516, June 2006.
  7. J. Guo, E. C. Kan, U. Ganguly and Y. Zhang, “High sensitivity and nonlinearity of carbon nanotube-based charge sensors”, J. Appl. Phys, vol. 99, p. 084301, 2006.
  8. G. Pei, W. Ni, A. V. Kammula, B. A. Minch and E. C. Kan, “A physical compact model of DGMOSFET for mixed-signal circuit applications, Part I: model formulation”, IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2135-2143, Oct. 2003.
  9.  G. Pei, J. Kedzierski, P. Oldiges, M. Ieong and E. C. Kan, “FinFET design considerations based on 3-D simulation and analytical modeling”, IEEE Trans. Electron Devices, vol. 49, no. 8, pp. 1411-1419, Aug. 2002.
  10. J. Jang, E. C. Kan, T. Arnborg, T. Johansson and R. W. Dutton, “Characterization of RF power BJT and improvement of thermal stability with nonlinear base ballasting”, IEEE J. Solid-State Circuits, vol. 33, no. 9, pp. 1428-1432, Sept. 1998.
  11. Z. Hsiau, E. C. Kan, J. P. McVittie and R. W. Dutton, “Robust, stable and accurate boundary movement for physical etching and deposition simulation”, IEEE Trans. Electron Device, vol. 44, no. 9, pp. 1375-1385, Sept. 1997.
  12. 1. D. W. Yergeau, E. C. Kan, M. Gander and R. W. Dutton, “ALAMODE: a layered model development environment,” Simulation of Semiconductor Devices and Processes, H. Ryssel and P. Pichler, eds., 1995, p. 66.